ENVIRONMENTAL PRODUCT DECLARATION

ISO 14025 ISO 21930 EN 15804

Owner of the declaration Program holder Publisher Declaration number Issue date Valid to H-vinduet Magnor AS The Norwegian EPD Foundation The Norwegian EPD Foundation 00233E 20.12.2013 20.12.2018

H-window 1,23 x 1,48, type AT200E

H-vinduet Magnor AS Manufacturer

General information

H-window 1,23 x 1,48, type AT200E

Product

Program holder:

The Norwegian EPD Foundation Post Box 5250 Majorstuen, 0303 Oslo Phone: +4723088000 e-mail: post@epd-norge.no

Declaration number:

00233E

This declaration is based on Product Category Rules: CEN Standard EN 15804 serve as core PCR Windows and Doors, NPCR 014 rev1 (2013-2018)

Declared unit:

H-window, 1,23 m x 1,48 m, type AT200E, with U-value 1.2 W/m2K

Declared unit with option:

Functional unit:

H-window, 1,23 m x 1,48 m, type AT200E, with U-value 1.2 W/m2K and an expected service life time of 60 years.

The environmental product declaration has been worked out by: Kari Sørnes, SINTEF Byggforsk

Verification:

Independent verification of data and other environmental information has been carried out in accordance with ISO14025, 8.1.3.

externally 🗹

internally Christofer Skaar

Dr. ing Christofer Skaar (Independent verifier approved by EPD Norway)

Declared unit:

H-window, 1,23 m x 1,48 m, type AT200E, with U-value 1.2 W/m2K

Key environmental indicators	Unit	A1 - A3
Global warming	kg CO ₂ -eqv	110,2
Energy use	MJ	1138,4
Renewable energy use	MJ	442,7
Non-renewable energy use	MJ	615,9
Dangerous substances	*	

* The product contains no substanses from the REACH Candidate list or the Norwegian priority list

Dr.ing Sverre Fossdal

Transport to central
warehouse Norway
1,05
0,24
0,22
0,01

H-vinduet Magnor AS

Manufacturer

Owner of the declaration:

H-vinduet Magnor AS Contact person: Leif Gunnar Borgen Phone: +47 982 99 404 e-mail: lgb@hvm.no

Place of production:

2240 Magnor

Management system:

Certified according to NDVK (Norsk Dør- og VindusKontroll)

Org. No:

NO 932239000 MVA

Issue date: 20.12.2013

Valid to:

20.12.2018

Comparability:

EPD of construction products may not be comparable if they not comply with EN 15804

Year of study:

2013

Approved according to ISO14025, 8.1.4

Succe Fossdal

(Chairman of the Verification Group of EPD-Norway)

%

49,7

5,2

7,5

0.8

0.5

0.7

14.6

20.9

0.0

0.0

100,0

Amounts based on allocation rules are given in the table below.

kg 27,3

2.8

4,1

0.4

0.3

0.4

8.0

11.5

0.02

0.001

54,9

Product

Product description:

H-window, type AT200, is a sliding hinged window for installation in exterior walls. The window can be supplied in various widths and heights. Approx. 70% of the window opening is glass. The window frame consists of an outside layer of aluminum, multi-isolator composite material and a layer of wood on the side facing inside.

Different types of glass and dimensions of the interior wood can be used, so that one can get an overall U-value for the whole window of 0,77 W/m2K and up. Dimensions presented by the functional unit are put out by PCR and is not the real dimensions that H-vinduet Magnor AS supplies.

Market:

Norway and parts of Europe

Reference service life:

60 years

LCA: Calculation rules

Functional unit:

H-window, 1,23 m x 1,48 m, type AT200E, with U-value 1.2 W/m2K and an expected service life time of 60 years.

Technical flowsheet related to the manufacturing (A3):

Cut-off criteria:

Technical data: Weight: 54.9 kg/FU

Materials

Plastic (PP)

Impregnant

EPDM-rubber

Composite ABS/PVC

Steel

Pine

Paint

Glue

Total

Product specification:

Isolated Glass Unit (IGU)

Aluminium profiles (85% rec.)

According to PCR

LCA: Scenarios and additional technical information

The manufacture is located at Magnor, a village in the municipality of Eidskog in Hedmark, Norway. The insulated glass units of Press Glass AS, steel from Stilka Industri AS, aluminum profiles from SAPA Magnor AS and composite from Primo AS, all of which have provided specific data on their production. In addition, pine, painting, impregnating, plastics and adhesives are included in the analysis. Scenarios for A4 to C4 are described below.

Transport from prouction site to building site (A4)

Туре	Capacity utilisation (incl. return)	Type of vehicle	Distance km	Fuel/Energy	Value
	%			consumption	(l/t)
Lorry		Diesel, 16-32t, EUR 4	400	3,64 kg/tkm	

Additional information:

Transport from the production site to the sentral warehouse is 50 km (according to the rules drawn by EPD-Norway).

End of life (C4)

	Unit	Value
Hazardous waste disposed	kg	
Collected as mixed construction waste	kg	
Reuse	kg	
Recycling	kg	
Energy recovery	kg	
To landfill	kg	54,9

Maintenance (B2)

	Unit	value
Detergent pr year (0,5dl each time)	dl	1,5
Water pr year (1 I each time)		3

Transport to waste processing (C2)

Туре	Capacity utilisation (incl. return)	Type of vehicle	Distance km	Fuel/Energy	Value
	%			consumption	(l/t)
Lorry		Diesel, 16-32t, EUR 4	50	3,64 kg/tkm	

Installation (A5) and De-construction demolition (C1)

Energy use in the installation (A5) and disassembly (C1) is considered to be small enough to be neglected (using 1% cut-off rule based on PCR). Reason: A typical mounting of a reference window is done manually by lifting the window into the opening. Then it must be adjusted properly in place and screwed with a cordless screwdriver and 4 screws to the wall. When removing it, the same is done just the opposite way, screws are removed or cut across, and the window is lifted out.

LCA: Results

Under are the system boundaries presented. The life cycle stages which are considered relevant are A1-A4, B2, C2 and C4.

Syste		Juuai	162 (1		su, ivii		ouul I		Ciale			HOL TEIE	vanii)			
Pro	duct st	age	Cons installa	struction tion stage					Use stage			End of life stage			Beyond the system boundaries	
Raw materials	Transport	Manufacturing	Transport	Construction installation stage	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery- Recycling-potential
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	С3	C4	D
Х	Х	Х	Х	MIR	MIR	Х	MIR	MIR	MIR	MIR	MIR	MIR	Х	MIR	Х	MID

System boudaries (X=included, MND=modul not declared, MNR=modul not relevant)

Environmental impact

Parameter	A1	A2	A3	A4	B2	C2	C4	
GWP	100,51	8,40	1,32	3,63	6,90	0,45	1,24	
ODP	7,95E-06	1,33E-06	1,16E-07	5,75E-07	5,28E-07	7,18E-08	1,25E-07	
POCP	2,62E-02	1,02E-03	2,54E-04	4,43E-04	6,53E-03	5,54E-05	3,33E-04	
AP	0,53	0,03	0,01	0,01	0,04	0,00	0,01	
EP	0,13	0,01	0,00	0,00	0,02	0,00	0,05	
ADPM	3,39E-04	0,00	4,02E-05	7,00E-06	2,97E-05	8,75E-07	5,42E-07	
ADPE	536,6	0,12	16,54	0,05	0,79	0,01	0,01	

GWP Global warming potential (kg CO₂-eqv.); **ODP** Depletion potential of the stratospheric ozone layer (kg CFC11-eqv.); **POCP** Formation potential of tropospheric photochemical oxidants (kg C₂H₄-eqv.); **AP** Acidification potential of land and water (kg SO₂-eqv.); **EP** Eutrophication potential (kg PO₄³⁻-eqv.); **ADPM** Abiotic depletion potential for non fossil resources (kg Sb -eqv.); **ADPE** Abiotic depletion potential for fossil resources (MJ)

Resource us	se							
Parameter	A1	A2	A3	A4	B2	C2	C4	
RPEE	326,92	1,79	114,0	0,77	86,73	0,10	0,22	
RPEM	252,96							
TPE	579,88	1,79	113,99	0,77	86,73	0,10	0,22	
NRPE	591,42	0,12	24,33	0,05	8,32	0,01	0,01	
NRPM	254,08							
TRPE	845,51	0,12	24,33	0,05	8,32	0,01	0,01	
SM	3,5							
RSF								
NRSF								
W	1,9	0,1	3,03E-02	2,7E-02	0,7	3,3E-03	2,8E-02	

RPEE Renewable primary energy resources used as energy carrier (MJ); **RPEM** Renewable primary energy resources used as raw materials (MJ); **TPE** Total use of renewable primary energy resources (MJ); **NRPE** Non renewable primary energy resources used as energy carrier (MJ); **NRPM** Non renewable primary energy resources used as materials (MJ); **TRPE**Total use of non renewable primary energy resources (MJ); **SM** Use of secondary materials (kg); **RSF** Use of renewable secondary fuels (MJ); **NRSF** Use of non renewable secondary fuels (MJ); **W** Use of net fresh water (m3)

End of life - Waste

	114010							
Parameter	A1	A2	A3	A4	B2	C2	C4	
HW	0,06							
NHW	0,32		0,57				54,90	
RW								

HW Hazardous waste disposed (kg); NHW Non hazardous waste disposed (kg); RW Radioactive waste disposed (kg)

End of life - Output flow

Parameter	A1	A2	A3	A4	B2	C2	C4	
CR								
MR			0,57					
MER								
EEE								
ETE								

CR Components for reuse (kg); MR Materials for recycling (kg); MER Materials for energy recovery (kg); EEE Exported electric energy (MJ); ETE Exported thermal energy (MJ)

Reading example: $9,0 \text{ E}-03 = 9,0^{*}10^{-3} = 0,009$

Figure: Distribution of carbon emissions on the different life cycle stages

It is A1 which contribute the most to emissions and energy use. The major emission contributions to A1 are coming from the glass panes (Isolated Glass Units) and the composite material in the frame (mixture of PVC and ABS).

Specific Norwegian requirements

Electricity

For the manufacture phase (A3), the Norwegian mean supply electricity mix from 2007-2011 (import included) is used.

GHG emissions: 0,013 kg CO₂ eqv/MJ

Dangerous substances

None of the following substances have been added to the product: Substances on the REACH Candidate list of substances of very high concern (of 20.12.2013) substances on the Norwegian Priority list (of.20.12.2013) and substances that lead to the product being classified as hazardous waste. The chemical content of the product complies with regulatory levels as given in the Norwegian Product Regulations.

Transport fra produksjonssted til sentrallager

Transport from the production site to the sentral warehouse is 50 km (according to the rules drawn by EPD-Norway).

Indoor environment

No tests has been performed related to indoor environment.

Bibliography

ISO 14025:2006	Environmental labels and declarations - Type III environmental declarations - Principles and procedures
ISO 14044:2006	Environmental management - Life cycle assessment - Requirements and guidelines
EN 15804:2012	Sustainability of construction works - Environmental product declaration - Core rules for the product category of construction products
ISO 21930:2007	Sustainability in building construction - Environmental declaration of building products
PCR	Windows and Doors, NPCR 014 rev1 (2013-2018)
Report	LCA-report, H-vinduet 1.23 m x 1.48 m Type AT200E, H-vinduet Magnor AS

